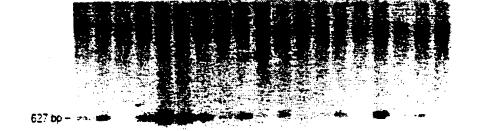

FIGURE 1


DOMESTA OF A CAPE

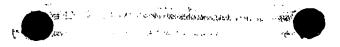
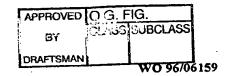
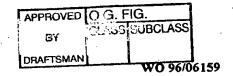

2/48

FIGURE 2A

FIGURE 2B




FIGURE 3A-1

TOGAGTOGGA	GAGTTGGCAC	AGGCCTTGAG	CTCGCTGTGA	CSTTCTCACG	GTGTTGGTTG	6.5
GGATCAGCTG	GTGACTCAGA	CAAGTETTGA	GCTCTACAAC	GTAACATACG	GGCTGATGCC	120
CACCCGATAC	CAGAATTACG	CAGTCGGCAA	TTCTGTGCCC	TAGAGTCACC	TCAAAGAATA	180
ATCTGTGGTG	TCCAAGGGGA	GGGTTCTGGG	GCCGGCTACT	TAGAAACCGC	CATAGATCGG	240
GCAGGGTGGA	GTACTTGAGG	AGCCGGCGGT	AGGTGGCCAG	GTGGGCCCGG	TTACCTGCTC	300
TTTTGCGTGC	TGCTGGAAGC	CTGCTCAGGG	ATTTCTTAAC	CTCGGCCTCG	GTTGGACGTA	360
CCATGGCAGA	AGGCGGTTTT	GGAGCGGACT	CGGTGGGGCG	CGGCGGAGAA	AAGGCCTCTG	420
TGACTAGGGG	AGGCAGGTGG	GACTTGGGGA	GCTCGGACGA	CGAATCAAGC	ACCTCCACAA	480
CCAGCACGGA	TATGGACGAC	CTCCCTGAGG	AGAGGAAACT	ACTAACGGGA	AAGTCTGTAA	540
AAACCTCGTA	CATATACGAC	GTGCCCACCG	TCCCGACCAG	CAAGCCGTGG	CATTTAATGC	600
ACGACAACTC	CCTCTACGCA	ACGCCTAGGT	TTCCGCCCAG	ACCTOTOATA	CGGCACCCTT	6 E C
CCGAAAAAGG	CAGCATITIT	GCCAGTCGGT	TGTCAGCGAC	TGACGACGAC	TEGGGAGAET	720
ACGCGCCAAT	GGATCGCTTC	GCCTTCCAGA	GCCCCAGGGT	GTGTGGTCGC	CCTCCCCTTC	780
CGCCTCCAAA	TCACCCACCT	CCGGCAACTA	GGCCGGCAGA	CGCGTCAATG	GGGGACGTGG	840
GCTGGGCGGA	TCTGCAGGGA	CTCAAGAGGA	CCCCAAAGGG	ATTITTAAAA	ACATOTACCA	900
	TCTCAAAGCC					960
TTGCCTTTAG	TOCTAGGGGC	GTGAAATCTG	CCATAGGGCA	AAACATTAAA	TCATGGTTGG	1020
GGATCGGAGA	ATCATCGGCG	ACTGCTGTCC	CCGTCACCAC	GCAGCTTATG	GTACCGGTGC	1080
ACCTCATTAG	AACGCCTGTG	ACCGTGGACT	ACAGGAATGT	TTATTTGCTT	TACTTAGAGG	1140
GGGTAATGGG	TGTGGGCAAA	TCAACGCTGG	TCAACGCCGT	GTGCGGGATC	TTGCCCCAGG	1000

AGAGAGTGAC AAGT	TTTCCC GAGCCCATGG	TGTACTGGAC	GAGGGCATTT	ACAGATTGTT	1260
,,,,,,	CACCTG ATGAAGTCTG				1320
AAATATACTO ATGC	CAAAAC AAGTTTTCGC	TCCCCTTCCG	GACGAACGCC	ACCGCTATCC	1380
TGCGAATGAT GCAG	CCCTGG AACGTTGGGG	GTGGGTCTGG	GAGGGGCACT	CACTGGTGCG	1440
TOTTTGATAG GCAT	CTCCTC TCCCCAGCAG	TGGTGTTCCC	TOTCATGCAG	CTGAAGCACG	1500
		TACTTTCCAT			1560
ACGTGGTCGC CATT	CTCACC CTCTCCAGCG	CCGAGTCGTT	GCGGCGGGTC	AGGGCGAGGG	1620
GAAGAAAGAA CGAC	GGGACG GTGGAGCAAA	ACTACATCAG	AGAATTGGCG	TGGGCTTATC	1680
	TCATGG ATCATGTTGC				1740
	ACAART ATTCCGGAAR				1800
AGGAGGAAAC TTTG	BAAAAC CTTCACGAGG	AGAGCATGCT	ACCTATGATO	ACCGGTGTAC	1860
	ACATCAT COOGTOGIG				1920
	ATTTATO GTAGOOGACO				1980
TGTGGACCGA AATO	CTACAGG CAGATCCTG	CCAATCCGGC	TATTAAACCC	AGGGCCATCA	2040
ACTGGCCAGC ATT	AGAGAGC CAGTCTAAA	CAGTTAATCA	CCTAGAGGAG	ACATGCAGGG	2100
		GCGATGCATA			2160
TGGCGCGTTG CCG	ACAACGG CGACGACAA	RACCCGCTCC	GCCACGCAG	TCATCAATGG	2220
	TCCATAG AACTGGAAT				2280
AAATCTGTTG AAT	GTGATCA CGGAGCCGG	C CCTGACAGAC	; TTGTGGACCT	CCGCCGAAGT	2340
CGCCGAGGAC CTC	AGGGTAA CTCTGAAAA	a gaggcaaagi	CTTTTTTC	CCAACAAGAC	2400

AGTTGTGATC	TCTGGAGACG	GCCATCGCTA	TACGTGCGAG	GTGCCGÁCGT	CGTCGCAAAC	2462
TTATAACATC	ACCAAGGGCT	TTAACTATAG	CGCTCTGCCC	GGGCACCTTG	GCGGATTTGG	2522
GATCAACGCG (CGTCTGGTAC	TGGGTGATAT	CTTCGCATCA	AAATGGTCGC	TATTCGCGAG	2550
GGACACCCCA	GAGTATCGGG	TGTTTTACCC	AATGAATGTC	ATGGCCGTCA	AGTTTTTCAT	1641
ATCCATTGGC	AACAACGAGT	CCGGCGTAGC	GCTCTATGGA	GTGGTGTCGG	AAGATTTCGT	2703
GGTCGTCACG	CTCCACAACA	GGTCCAAAGA	GGCTAACGAG	ACGGCGTCCC	ATCTTCTGTT	2760
cogreteces (GATTCACTGC	CATCTCTGAA	GGGCCATGCC	ACCTATGATG	AACTCACGTT	2820
CGCCCGAAAC	GCAAAATATG	CGCTAGTGGC	GATCCTGCCT	AAAGATTOTT	ACCAGACACT	2883
CCTTACAGAG .	AATTACACTC	GCATATTTCT	GAACATGACG	GAGTEGAESE	CCCTCGAGTT	2940
CACGCGGÁCG	ATCCAGACCA	GGATCGTATC	AATCGAGGCC	AGGCGCGCCT	GCGCAGCTCA	3000
AGAGGCGGCG	CCGGACATAT	TCTTGGTGTT	GTTTCAGATG	TTGGTGGCAC	ACTITCTIGT	3060
TGCGCGGGGC	ATTGCCGAGC	ACCGATTTGT	GGAGGTGGAC	TGCGTGTGTC	GGCAGTATGC	3120
GGAACTGTAT	TITCTCCGCC	GCATCTCGCG	TCTGTGCATG	CCCACGTTCA	CCACTGTCGG	3180
GTATAACCAC	ACCACCCTTG	GCGCTGTGGC	CGCCACACAA	ATAGCTCGCG	TGTCCGCCAC	3240
GAAGTTGGCC						3300
CGCCCGTGAT						3360
TATGTATACC						3420
GGACATACAC						3480
GCTACTGAGA						3540
GATCGCCCGC,						3600
TOTAGGACTA						3660
•					TGCTCCACGC	3720
					TTACAGCCGA	3780
		•			CCGAAGCACT	3840
					TGTTTATATC	3900
					: ACATTCCCAT	3960
					TAATCATGAG	4020
					GGGTGCAGAC	4080
					TICATTATIT	
					R GACGCGCAGE	
					ACTITICITIA	
					A AAAGGTTTCC	
					T CAGAAAGTGG	
					: TITGACGGTC	
TTTGGGGCTA	CACATCATA	AGTACIIII	C CATGGCTTC	T ATAAGCAÇE	T TGGAACAATC	45,00

•				•	
TGGGGGTTGG CGAATGG	STT CCCTAAACGG	GAAATCCTCT	ATGGTATTCA	GGCAĞAAGAC	4560
CGCGTCCTCC ACCCGAC	STT TGAGTCTTTC	TAGCAGAGCG	CCGAAGAACT	CCCGCTCGTG	4620
TGTTTTCGCA GGGGCAA	STT CTGCGCCGTA	CAGCGATGAG	AAACACGACA	CGATGTTTTC	4680
CAGCCCCATG CTGCGCA	SCA ACACGTGCTT	CAGGAACAGG	TGTTGTAGCC	GGTTCAGTTT	4740
TAGCTTGGGT AGAAAAG	ITA TEGAGTTGTT	AGCACGCTCC	ATGATGGTAA	CGGTGTTGAA	4800
GTCACAGACC GGGCTTT	CTC CGAGTCTCGG	CCGCCTGAGT	CCAATCATGT	AGAACATAGA	4860
CGCGGCCTCG TTGTCTG	TGT TAAGTGACAC	GATATCCCGT	TEGERAREET	GTGCGATGTT	4920
GTGTTTCAGT ATAGATC	TGG TCTGACCGGC	ACGGGGTGTT	ATGGGGTGAC	GCGGTAAAGG	4980
CGACTETGGG TCAAACA	CCT TTATGCGGTT	GGCGGCCTCG	TEGATGAEGA	CACGCTTGTT	5040
CGCGGCGTGT ATGGGGA	CGC GACGGCATCC	CGCTGGCAGA	TOTATAATOT	TAAAGTTGGT	5100
ATAAGACTGG TCGCTCG	TTA TGGCCAGCCG	GCACTCCGGT	AGTATCTGCG	TGTCCTCGAA	5160
TTCGTGGCCG CGTACGA				•	5220
GCCTACGCAC AAGTGGC					5280
CGATAGTTCC GGGTGCC					5340
CTTTTCGAAC AACAGTG					5400
CGCCGGAGAG GTCAAGA					5460
TACTAGACTA GCCTTCA				·	5520
ACGTACGCGG GGATCGG					5580
GTGCAGGCCT AGTTTGC					5640
ATGACCCGTG GTGGCGA					5700
GGTCTTCTTG TTTCGGG					5760
TGCGCACTCG TGTTTGC					5820
cceseceses ectoses					5880
CAGACACTOC AGGAACO					5940
TAGGGAGAAT ATTCTAT					6000
CGCCAGCTCG TGGCGAA					6061
TGTCGCGGCC TTAAACC					6180
GTTTGTGGTC CARAATA					6240
GTGCAGGTCC AACGTGC					6300
CAGAAAGCAT TTCAGCO					
GATGTTTATT GCGGTGC		•			6360 6420
AGGTTCCTTT ACGGAGT					6480
AATAGTETTT TGCAGGG					
GGTGTTGAAT ATGGTGA					6540
GTCTGACACT GTAGAG	CTGC CCAGAGTCC	g cocorcosto	GCCGCGTAT	GTTGGAAGEA	6633

APPROVED O G. FIG.
BY CLASS SUBCLASS
DRAFTSMAN WO 96/06159

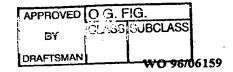
7/48

CGCCTGCAAA TTTCCTTTCA TGGCTGCTCG CCGGTCTTTC GGCGCGTACC GGATTCTTGA	6660
AAGCGTCGCC GCCAGGAGAC GCGGTGTCTC GTGGGTGCCT AAAAAGTTTG CGCAGGGGTS	67 2 0
CAGTOCGOTG CACGAGTGGC CGATGCAGTC TGCCACTGCC ATACACATGA CGAGTCTGTA	6780
GATGGCCGGT GTGCCCGGAT ACACTAGATA GTAGGTACAA TCTGGGGTAC TGACGACCAC	6841
COTGTATGGC TITGGTCCGG GGTCCTTGCG TTGGATTTTT ACGTGCAGAC GGGACACGAG	6903
CTGGTTTAGA GCCAGCTGAA AGCCCACCAG ATCCCGTCCG TTAACCTTGA CGTCCTGGTG	6963
CTTACTCTGT TTCGACAGGT TCTTCAGCAC GGTGGGCAGT CGCTCTACGT TGTGAGCGAT	7020
GGCACGGCGC AGCGAGACCA GCTCTCCGTG CCACCCCCAC GTGGCCATGA AGCTGCTGAT	7081
GTTAAACTTT AAAAAATGTA GCTGTGCGTC TGGGGATGCG GGTGGCATTA TTGAAAACGA	7140
GAGATGCTTC AGGCTCTCCA GGAGTGCAAA ATAATTTTGA TAGATTGTGG GTTGTAGACT	7200
ATGGGGCAAC ACCGCCAGAA ACGCATGAAA ACACTGTTCG AACTCCCAGA ACTCCAGGTA	7260
CCTGCACACT ATCCTGAACA TGGCTTTGTA ACATATGGTG CACGTTAGTA GCGCGGGAAG	7320
ATACAGOGAG OGTAGOTOCO TGAATTOGCA GGGTTTATCA CAATCATOGG TAAGTTOCCA	7380
TGATCCCACC GCAGGTAGGT AGTTGTCGGT GTCTATCTGT CCGCGCGTAA ACACTCCACC	7440
ACCUTCAATT ATTAAACCTT CUCCCCTUTA CCUTCUACCC ACTITTCCCA AAAGAGTCCC	7500
TTOTTGATGT ATAMAGGGT GGAGGGGTTC CCCCAGGAGT AGTCTGCGTA TCGCTCTGCA	7560
GGCGAAAAAG GTGGGCTCGG GCTGCATCAT CTTATCAAGA CCTTCTAAGG TCAGCTCTGC	7620
CTGCAGGTGC GAGTTGGTGG CCAGACAGCA GAATATTTCC AGCTGTGATT CCCAAGTCGC	7680
TTGATAACAC GTGGTCTGCG GACTCGTCGT CAGGGAGGCG CTCGGTGGCA GTAGTAGGGG	77,40
GCCCTCGAGC GCTGCCATGG AGGCGACCTT GGAGCAACGA CCTTTCCCGT ACCTCGCCAC	7800
GGAGGCCAAC CTCCTAACGC AGATTAAGGA GTCGGCTGCC GACGGACTCT TCAAGAGCTT	7860
TCAGCTATTG CTCGGCAAGG ACGCCAGAGA AGGCAGTGTC CGTTTCGAAG CGCTACTGGG	7910
CGTATATACC AATGTGGTGG AGTTTGTTAA GTTTCTGGAG ACCGCCCTCG CCGCCGCTTG	7980
CGTCAATACC GAGTTCAAGG ACCTGCGGAG AATGATAGAT GGAAAAATAC AGTTTAAAAT	8040
TTCAATGCCC ACTATTGCCC ACGGAGACGG GAGGAGGCCC AACAAGCAGA GACAGTATAT	8100
CGTCATGAAG GCTTGCAATA AGCACCACAT CGGTGCGGAG ATTGAGCTTG CGGCCGCAGA	8160
CATCGAGCTT CTCTTCGCCG AGAAAGAGAC GCCCTTGGAC TTCACAGAGT ACGCGGGTGC	8223
CATCAAGACG ATTACGTCGG CTTTGCAGTT TGGTATGGAC GCCCTAGAAC GGGGGCTAGT	9283
GGACACGGTT CTCGCAGTTA AACTTCGGCA CGCTCCACCC GTCTTTATTT TAAAGACGCT	8340
GGGCGATCCC GTCTACTCTG AGAGGGGCCT CAAAAAGGCC GTCAAGTCTG ACATGGTATC	9400
CATGITCAAG GCACACCICA TAGAACAITC ATTITITCIA GATAAGGCCG AGCTCATGAC	8461
AAGGGGGAAG CAGTATGTCC TAACCATGCT CTCCGACATG CTGGCCGCGG TGTGCGAGGA	8510
TACCGTOTTT AAGGGTGTCA GCACGTACAC CACGGCCTCT GGGCAGCAGG TGGCCGGCGT	8580
COTGGAGACG ACGGACAGCG TOATGAGACG GOTGATGAAC CTSCTGGGGC AAGTGGAAAG	8640
TGCCATGTCC GGGCCCGCGG CCTACGCCAG CTACGTTGTC AGGGGTGCCA ACCTCGTCAC	8700
Idealare appropriate	

APPROVED O G. FIG.

BY SUBCLASS

DRAFTSMAN WO 96/06159

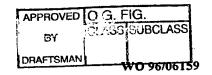

8/48

EGCCGTTAGC TACGGAAGGG CGATGAGAAA CTTTGAACAG TTTATGGCAC GCATAGTGGA	8760 .
CONTOCONAL GOTOTGCCGT CTGTGGNAGG TGNCANGGCC GCTCTGGCGG ACGGNCACGN	8620
CONGATTONG AGANOCOGON TOGOOGOCTO TOTOGTONNG ATAGGGGATA AGTTTGTGGO	8883
CATTGAAAGT TTGCAGCGCA TGTACAACGA GACTCAGTTT CCCTGCCCAC TGAACCGGCG	894C
CATCCAGTAC ACCTATITCT TOCCTGTTGG COTTCACCTT COCGTGCCCC GCTACTCGAC	9000
ATCOGTOTON GTONGGGGGG TAGANTOCCO GGCONTOCAG TOGNOCGAGN CGTGGGTGGT	9060
TAATAAAAC AACGTGCCTC TTTGCTTCGG TTACCAAAAC GCCCTCAAAA GCATATGCCA	9120
COCTOGRATG CACARCOCCA COCRGTCAGO CORGGCACTA ARCCARGOTT TTCCCGATCO	9180
CGACGGGGGA CATGGGTACG GTCTCAGGTA TGAGGAGACG CCAAACATGA ACCTATTCAG	9241
ARCGITCCRC CAGIATTACA IGGGGAAAAA CGIGGCATTI GITCCCGAIG IGGCCCAAAA	9300
AGCGCTCGTA ACCACGGAGG ATCTACTGCA CCCAACCTCT CACCGTCTCC TCAGATTGGA	9360
GGTCCACCCC TTCTTTGAT: TTTTTGTGCA CCCCTGTCCT GGAGCGAGAG GATCGTACCG	9420
CGCCACCCAC AGAACAATGG TTGGAAATAT ACCACAACCG CTCGCTCCAA GGGAGTTTCA	9480
GGAAAGTAGA GGGGCGCAGT TCGACGCTGT GACGAATATG ACACACGTCA TAGACCAGCT	9540
AACTATTGAC GTCATACAGG AGACGGCATT TGACCCCGCG TATCCCCTGT TCTGCTATGT	9600
ARTIGRAGER ATGATICACG GACAGGAAGA AAAATTCGTG ATGAACATGC CCCTCATTGC	966C
COTGGTOATT CAAACCTACT GGGTCAACTC GGGAAAACTG GCGTTTGTGA ACAGTTATCA	9720
CATGGTTAGA TTCATCTGTA CGCATATTGG GAATGGAAGC ATCCCTAAGG AGGCGCACGG	9780
CONSTACOGO AMANTETTAG GOGAGETENT CGCCCTTGAG CAGGEGETTE TEMAGETEGE	9840
GGGACACGAG ACGGTGGGTC GGACGCCGAT CACACATCTG GTTTCGGCTC TCCTCGACCC	9905
GEATOTGOTG COTOCOTTTG COTACCACGA TGTOTTTACG GATOTTATGO AGAAGTOATO	9960
CAGACAACCO ATAATCAAGA TOGGGGATOA AAACTACGAO AACCOTOAAA ATAGGGOGAO	10020
ATTENTERAS STEAGGGGTC GCATGGAGGA SETAGTGAAT AACSTTGTTA ACATTTASSA	10080
GACAAGGGTC AATGAGGACC ATGACGAGAG ACACGTCCTG GACGTGGCGC CCCTGGACGA	10140
GAATGACTAC AACCCGGTCC TCGAGAAGCT ATTCTACTAT GTTTTAATGC CGGTGTGCAG	18250
TAACGGCCAC ATGTGCGGTA TGGGGGTCGA CTATCAAAAC GTGGCCCTGA CGCTGACTTA	10265
CARCOGOCCO GTCTTTGCGG ACGTCGTGAA CGCACAGGAT GATATTCTAC TGCACCTGGA	10321
GARCGGARCO TTGARGGROA TTCTGCRGGC AGGCGRCATA CGCCCGRCGG TGGRCATGAT	10380
CAGGGTGCTG TGCACCTCGT TTCTGACGTG CCCTTTCGTC ACCCAGGCCG CTCGCGTGAT	10441
CACAAAGOGG GACCOGGCCC AGAGTTTTGC CACGCACGAA TACGGGAAAGG ATGTGGCGCA	10500
GACCGTGCTT GTTAATGGCT TTGGTGCGTT CGCGGTGGCG GACCGCTCTC GCGAGGCGGC	10560
GGAGACTATG TTTTATCCGG TACCCTTTAA CAAGCTCTAC GCTGACCCGT TGGTGGCTGC	10623
CACACTRICAT COGOTOCTGO CANACTATOT CACCAGGOTO COCARCOAGA GANACGOGGT	10680
GGTCTTTAAC GTGCCATCCA ATCTCATGGC AGAATATGAG GAATGGCACA AGTCGCCCGT	10741
CGCGGCGTAT GCCGCGTCTT GTCAGGCCAC CCCGGGCGCC ATTAGCGCCA TGGTGAGCAT	10800

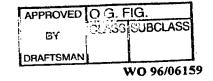
WO 96/06159

9/48

GCACCAAAAA	CTATCTGCCC	CCAGTTTCAT	TTGCCAGGCA	AAACACCGCA	TGCACCCTGG	10861
TTTTGCCATG	ACAGTEGTEA	GGACGGACGA	GGTTCTAGCA	GAGCACATCC	TATACTGCTC	10920
CAGGGCGTCG	ACATCCATGT	TTGTGGGCTT	GCCTTCGGTG	GTACGGCGCG	AGGTACGTTI	10980
GGACGCGGTG	ACTTTTGAAA	TTACCCACGA	GATCGCTTCC	CTGCACACCG	CACTTGGCTA	11040
CTCATCAGTC	ATCGCCCCGG	CCCACGTGGC	CGCCATAACT	ACAGACATGG	GAGTACATTS	11100
TCAGGACCTC	TTTATGATTT	TCCCAGGGGA	CGCGTATCAG	GACCGCCAGC	TGCATGACTA	11160
TATCAAAATG	AAAGCGGGCG	TGCAAACCGG	CTCACCGGGA	AACAGAATGG	ATCACGTGGG	11220
ATACACTGCT	GGGTTCCTC	GCTGCGAGAA	CCTGCCCGGT	TTGAGTCATG	GTCAGCTGGC	11280
AACCTGCGAG	ATAATTCCCA	CGCCGGTCAC	ATCTGACGTT	GCCTATTTCC	AGACCCCCAG	11340
CAACCCCCGG	GGGCGTGCGG	CGTCGGTCGT	GTCGTGTGAT	GCTTACAGTA	ACGAAAGCGC	11400
AGAGCGTTTG	TTCTACGACC	ATTCAATACC	AGACCCCGCG	TACGAATGCC	GGTCCACCAA	11460
CAACCCGTGG	GCTTCGCAGC	GTGGCTCCCT	CGGCGACGTG	CTATACAATA	TCACCTTTCG	11520
CCAGACTGCG	CTGCCGGGCA	TGTACAGTCC	TTGTCGGCAG	TTCTTCCACA	AGGAAGACAT	11580
TATGCGGTAC	AATAGGGGGT	TGTACACTTT	GGTTAATGAG	TATTCTGCCA	GCTTGCTGG	11640
GCCCCCGCC	ACCAGCACTA	CAGACCTCCA	GTACGTCGTS	GTCAACGGTA	CAGACGTGTT	11700
TTTGGACCAG	CCTTGCCATA	TGCTGCAGGA	GGCCTATCCC	ACGCTCGCCG	CCAGCCACAG	11760
AGTTATGCTT	GCCGAGTACA	TGTCAAACAA	GCAGACACAC	GCCCCAGTAC	ACATGGGCCA	11820
GTATCTCATT	GAAGAGGTGG	CGCCGATGAA	GAGACTATTA	AAGCTCGGAA	ACAAGGTGGT	11880
GTATTAGCTA	ACCCTTCTAG	CGTTGGCTAG	TCATGGCACT	CGACAAGAGT	ATAGTGGTTA	11940
ACTICACCIC	CAGACTETTE	GCTGATGAAC	TGGCCGCCCT	TCAGTCAAAA	ATAGGGAGCG	12000
TACTGCCGCT	CGGAGATTGC	CACCGTTTAC	AAAATATACA	GGCATTGGGC	CTGGGGTGCG	12060
TATGCTCACG	TGAGACATCT	CCGGACTACA	TCCAAATTAT	GCAGTATCTA	TCCAAGTGCA	12120
CACTCGCTGT	CCTGGAGGAG	GTTCGCCCGG	ACAGCCTGCG	CCTAACGCGG	ATGGATCCTT	12183
CTGACAACCT	TCAGATAAAA	AACGTATATG	cccc ctttt	TCAGTGGGAC	AGCAACACCC	12240
	•				CTCGAATCCA	12300
		CCCATGGTCG			•	12360
		ATCTACTCCA				12420
					ACATATOGTO	
					CIGICCAIGI	
	•				ACGGCGCTCG	
		•			GATGAGGTGA	
					CGCGTCATGT	
					CACGTGTATG	
					CGATTTGAAG	
ceceeeee	T ATGGCGTCA	CIGATATIC	GTCGGTTGCA	AGGACGGAT	ACGGCTCTGT	12900



				GTCTACCTGC		12960
ACCCTGGGTG						13011
TATGGCTCGA	AAGCTTCATC	GTGGTGCCCT	GCCCTCAAAT	TOTCACAACG.	GCTTGAGGAT	13060
GGTGCTTTTT	TGTTATTGTT	ACTTGCAAAA	TTGTGTGTAC	CTAGCCCTGT	TTCTGTGCCC	1314:
COTTAATCOT	TACTTGGTAA	CTCCCTCAAG	CATTGAGTTT	GCCGAGCCCG	TTGTGGCACC	13000.
TGAGGTGCTC	TTCCCACACC	CGGCTGAGAT	GTCTCGCGGT	TGCGATGACG	CGATTTTTTG	13260
TAAACTGCCC	TATACCGTGC	CTATAATCAA	CACCACGTTT	GGACGCATTT	ACCCGAACTC	13320
TACACGCGAG	CCGGACGGCA	GGCCTACGGA	TTACTCCATG	GCCCTTAGAA	GGGCTTTTGC	13380
AGTTATGGTT	AACACGTCAT	GTGCAGGAGT	GACATTGTGC	CGCGGAGAAA	CTCAGACCGC	13441
ATCCCGTAAC	CACACTGAGT	GGGAAAATCT	GCTGGCTATG	TTTTCTGTGA	TTATCTATGC	13500
CTTAGATCAC	AACTGTCACC	CGGAAGCACT	GTCTATCGCG	AGCGGCATCT	TTGACGAGCG	13560
TGACTATGGÁ	TTATTCATCT	CTCAGCCCCG	GAGCGTGCCC	TCGCCTACCC	CTTGCGACGT	13620
GTCGTGGGAA	GATATCTACA	ACGGGACTTA	CCTAGCTCGG	CCTGGAAACT	GTGACCCCTG	13680
GCCCAATCTA	TCCACCCCTC	CCTTGATTCT	AAATTTTAAA	TAAAGGTGTG	TCACTGGTTA	13740
CACCACGATT	AAAAACCACT	CACTGAGATG	TCTTTTTAAC	CGCTAAGGGA	TTATACCGGG	13800
ATTTAAAACC	GCCCACTGAT	TTTTTTACGC	TAAGAGTTGG	GTGCTTGGGG	GGTTTTGCAT	13860
TGCTCTGTTG	TAAACTATAT	ATAAGTTAAA	CCAAAATTCG	CAGGGAGACA	AGGTGACGGT	13920
GGTGAGAACT	CAGTTGAGAG	TCAGAGAATA	CAGTGCTAAT	CAGGGTAGAT	GAGCATGACT	13980
TTCCCCGTCT	CCAGTCACCG	GAGGAATGGT	GGACGGCTCC	GTCCTGGTGC	GAATGGCCAC	14040
CAAGCCTCCC	GTGATTGGTC	TTATAACAGT	GCTCTTCCTC	CTAGTCATAG	GCGCCTGCGT	14100
CTACTGCTGC	ATTCGCGTGT	TCCTGGCGGC	TCGACTGTGG	CGCGCCACCC	CACTAGGCAG	14160
GGCCACCGTG	GCGTATCAGG	TCCTTCGCAC	CCTGGGACCG	CAGGCCGGGT	CACATGCACC	14220
GCCGACGGTG	GGCATAGCTA	CCCAGGAGCC	CTACCGTACA	ATATACATGC	CAGATTAGAA	14280
CGGGGTGTGT	GCTATAATGG	ATGGCTATGG	GGGGGGCTG	TAGATAATTG	AGCGCTGTGC	14340
TTTTATİGTG	GGGATATGGG	CTTGTACATG	TGTCTATCAT	CGGTAGCCAT	AAAATGGGCC	14400
ATGACAACTG	CCACAAGTAA	GTCGTCCGAC	ATGTGCTTTT	GCTTGGCGCT	GTATGACTGC	14460
CCTCCATCCC	TAAGCGGGAC	GCACTTGATO	GCGCGGACCT	GTTCTACCAG	GTAGGTCACC	14520
GGGTCAAATG	ATATTTTGAT	GGTGTTGGAC	ACCACCGTCT	GGCTGGCGCT	CAGGGTGCCG	14590
GAGTTCAGAG	CGTAGATGAA	TGTCTCAAAC	GCGGAGGATT	TOTOGOCTOC	CAACATGTAA	14640
ATTGGCCACT	GCAGGGCGCT	GCTCTTGTCA	. GTATAGTGTA	GAAAATGTAT	GGGGAGCGGG	14700
CATATTTCGT	TAAGGACGGT	TGCAATGGCC	ACCCCAGAAT	CTTGGCTGCT	GTTGCCTTCG	14760
ACCGCCGCGT	TCACGCGCTC	AATTGTGGTG	TGGAGCACAG	CGATCGCCTT	AATCATCGTG	14820
CATGCGCAGG	ACGCTATCTC	GTAAGCAGCT	GCGCCAGTGA	GGTCGCGCAG	GAAGAAATGC	14860
TECATGECCA	ÄTATGAGGCT	TETGGTGGGA	GTCTGAGTAC	TCGTGACAAC	GGCGCCCACG	14940
CCAGTACCGG	ACGCCTCCGT	GTIGITICGTA	TACGCGGGGT	CGATGTAAAC	AAACAGITGT	15000


APPROVED O G. FIG.
BY CLASS SUBCLASS
DRAFTSMAN WO 95/06159

11/48

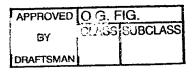
TITECAAGGE ACTTETGAAC CTCCTGGGCG GTGGTGTCTA CCCGACACAT GTCAAACTGT	15060
·	15120
·	15180
	15240
TOTTGCAGGT GGAAATOTTO TOGGTGGTOO GCACACACGT AACTGACCAC ATTCAGCATO	15300
	15360
	15420
GCATCOTTTT TAATAAATT CGCCTCGTCT ACGTAGAGCA GGTTAAAGGT CTGTCCCCGA	15480
ATGCTCTGCA GACACGGAAA GACACAAAAG AGGGGCTCAT AAGCGGCTAA CAGTAAAGGA	18540
GAGGAGGCGA ACAGTGCGTG GCTCTTGGTT CTTGGGAATA AAAGGGGGCG TGTGTGCCGA	15600
TOGATOGTAT GGGTGAGCCA GTGGATCCTG GACATGTGGT GAATGAGAAA GATTTTGAGG	15660
AGTGTGAACA ATTTTTCAGT CAACCCCTTA GGGAGCAAGT GGTCGCGGGG GTCAGGGCAC	15720
TOGACGGOOT OGGTOTOGOT GACTOTOTAT GTOACAAAR AGAAAGACTO TGCOTGOTGA	15780
TGGACCTGGT GGGCACGGAG TGCTTTGCGA GGGTGTGCCG CCTAGACACI GGTGCGAAAT	15840
GAAGAGTGTG GCGAGTCCCT TATGTCAGTT CCACGGCGTG TTTTGCCTGT ACCAGTGTCG	15900
CCAGTGOOTG GCATACCACG TGTGTGATGG GGGCGCCGAA TGCGTTCTCC TGCATACGCC	15960
GGAGAGCGTC ATCTGCGAAC TAACGGGTAA CTGCATGCTC GGCAACATTC AAGAGGGCCA	16020
GITTIAGGG CCGGTACCGT ATCGGACTTT GGATAACCAG GTTGACAGGG ACGCATATCA	16080
CGGGATGCTA GCGTGTCTGA AACGGGACAT TGTGCGGTAT TTGCAGACAT GGCCGGACAC	16140
CHOOGTARTO GTGCAGGAAR TAGCOCTGGG GGACGGCGTO ACCGACACCA TOTOGGCCAT	16201
TATAGATGAA ACATTOGGTG AGTGTCTTCC CGTACTGGGG GAGGCCCAAG GCGGGTACGC	16260
COTESTOTET ASCATSTATO TECACSTTAT CSTCTCCATO TATTOSACAA AAACSSTSTA	16320
CAACAGTATS CTATTTAAAT GCACAAAGAA TAAAAAGTAC GACTGCATTG CCAAGCGGGT	16361
GCGGACAAAA TGGATGCGCA TGCTATCAAC GAAAGATACS TAGGTCCTCG CTGCCACCGT	16440
TIGGESCACG IGGIGETGES TAGGASSTIT SIGSIGATE ASGESATASS SETGGAGESS	16500
GAGATCATOT TYTECACOTA CACCOGGTTC AGCOGGTCGO CAGGGTCATO COGCOGGTTS	16561
STGSTGTGTG GGAAACGTGT CCTGCCAGGG GAGGAAAACC AACTTGCGTC TTCACCTTCT	16620
GETTTGGCGC TTAGCCTGCC TCTGTTTTCC CACGATGGGA ACTTTCATCC ATTTGACATC	16683
TEGGTACTGE GCATTTECTS CECTGGTTET AATETTAGTE TTACTGTCAG ATTTCTCTAT	16743
CTATCTCTGG TGGTGGCTAT GGGGGCGGGA CGGAATAATG CGCGGAGTCC GACCGTTGAC	16801
GGGGTATCGC CGCCAGAGGG CGCCGTAGCC CACCCTTTGG AGGAACTGCA GAGGCTGGCG	
COTOCTACOS COGACOCOGO ACTOACOCOT GGACCOTTOS AGGTOSTGAS COGCOTTOTO	
CGCGCAGGGT CAGACGGAGA CCGCGCCACT CACCACATGG CGCTCGAGGC TCCGGGAACC	
GTGCGTGGAG AAAGCCTAGA CCCGCCTGTT TCACAGAAGG GGCCAGCGCG CACACGCCAC	
AGGCCACCCC COGTGCGACT GAGCTTCAAC CCCGTCAATG CCGATGTACC CGCTACCTGG	

CGAGACGCCA CTAACGTGTA CTCGGGTGCT CCCTACTATG TGTGTGTTTTA CGAACGCGGT	17160
GGCCGTCAGG AAGACGACTG GCTGCCGATA CCACTGAGCT TCCCAGAAGA GCCCGTGCCC	17220
COGCONOCIG GOTTAGTGTT CATGGACGAC TTSTTCATTA ACACGAAGCA GTGCGACTTT	17280
STGGACACGC TAGAGGCCGC CTGTCGCACG CAAGGCTACA CGTTGAGACA GCGCGTGCCT	17340
GTEGECATTE CTEGEGACGE GGAAATEGEA GACGEAGTTA AATEGEACTT TTTAGAGGEG	17400
TGCCTAGTGT TACGGGGGCT GGCTTCGGAG GCTAGTGCCT GGATAAGAGC TGCCACGTCC	17460
COGCOCOTTG GCCGCCACGC CTGCTGGATG GACGTGTTAG GATTATGGGA AAGCCGCCCC	17520
CACACTOTAG GTTTGGAGTT ACGCGGCGTA AACTGTGGCG GCACGGACGG TGACTGGTTA	17580
GAGATTTTAA AACAGCCCGA TGTGCAAAAG ACAGTCAGCG GGAGTCTTGT GGCATGCGTG	17640
ATCGTCACAC CCGCATTGGA AGCCTGGCTT GTGTTACCT3 GGGGTTTTGC TATTAAAGCC	17700
CGCTATAGGG CGTCGAAGGA GGATCTGGTG TTCATTCGAG GCCGCTATGG CTAGCCGGAG	17760
GCGCAAACTT CGGAATTTCC TAAACAAGGA ATGCATATGG ACTGTTAACC CAATGTCAGG	17820
GGACCATATO AAGGTOTTTA ACGCCTGCAC CTCTATCTCG CCGGTGTATG ACCCTGAGCT	17880
GGTAACCAGC TACGCACTGA GCGTGCCTGC TTACAATGTG TCTGTGGCTA TCTTGCTGCA	17940
TARAGTCATG GGACCGTGTG TGGCTGTGGG AATTAACGGA GAAATGATCA TGTACGTCGT	18000
AAGCCAGTGT GTTTCTGTGC GGCCCGTCCC GGGGCGCGAT GGTATGGCGC TCATCTACTT	18060
TEGRICAGITI CTGGAGGAAG CATCCGGACT GAGATTTCCC TACATTGCTC CGCCGCCGTC	18120
GOGGGAACAC GTACOTGACO TGACCAGACA AGAATTAGTT CATACOTCOC AGGTGGTGCG	18180
CCGCGGCGAC CTGACCAATT GCACTATGGG TCTCGAATTC AGGAATGTGA ACCCTTTTGT	18240
TIGGCTCGGG GGCGGATCGG TGTGGCTGCT GTTCTTGGGC GTGGACTACA TGGCGTTCTG	18300
TECGGGTGTE GACGGAATGE CGTEGTTGGE AAGAGTGGEE GEEETGETTA CEAGGTGEGA	18360
CCACCCAGAC TGTGTCCACT GCCATGGACT CCGTGGACAC GTTAATGTAT TTCGTGGGTA	18420
CTGTTCTGCG CAGTCGCCGG GTCTATCTAA CATCTGTCCC TGTATCAAAT CATGTGGGAC	
CGGGAATGGA GTGACTAGGG TCACTGGAAA CAGAAATTIT CTGGGTCTTC TGTTCGATCC	18540
CATTGTCCAG AGCAGGGTAA CAGCTCTGAA GATAACTAGC CACCCAACCC CCACGCACGT	18600
CGAGAATGTG CTAACAGGAG TGCTCGACGA CGGCACCTTG GTGCCGTCCG TCCAAGGCAC	
COTGGGTOOT CTTACGAATG TOTGACTACT TCAGCOGOTT GOTGATATAT GAGTGTAAAA	18720
ANOTTANGGO COTGGGCTTA CGTTCTTATT GAAGCATGTT GCGCACATCA GCGAGCTGGA	18780
COGTOCTOCG GGTCGCGTGT AGATTATGGT TCCGTTCTCC TTCTTGATGT TTAAATITT.	18940
GGGGGGGARC CACCGACAAA GCGTCTTTAT GATTTCCGCG AACACGGAGT TGGCTACGTC	19900
CTITTGGTGG GCTACGTACC CAATGTTAAT GTTCTCTACG GATGCCAGTA GCATGCTGA	18960
GATEGERACE ACTATERATE TOTTTEEGTG TOTECTTGGT ATTAGGAATA EGETTGEST	19020
TIGOTTAAAC GTCTGTAAAA CACTGTTIGG AGTTTCAAAT AAACCGAAGT ACTGCTTAA	19080
CARTICAAAC AACTGGTGCG TCTTTTGTGG GGCCTTGATT GAAACCAAAA AGAAAAAAG	19140
GTGCATTACT AGCTGCTGTT GGAAGGGCTC CAGCCAGTGC ACCCCGGGAA CGTAACAGC	19200

GTTCAGAAAG	GACGAAAGGT	TAACCAGAAA	AGCCTGAAGT	TCGCGGTAGA	CAGAGCAGGC	19260
GTGCAGGGAG	TOGTGTGTTT	TTCTGCCCGC	CTGGTACTCG	ACCAGTTGAT	CGGCCGTGGA	19320
GACGTGCGCG	TECTEGEGEA	CACACCGCAT	CTGCAAGTAT	GTTGATAGGG	ACTCCAATAG	19380
	GCGGGGACGT					19440
	GTGGCGGGAT					19500
					TGGGACAGTG	19560
					Cédiciccie	19620
					TGAGCTCGCT	19680
					AACTTGCCCT	19740
					TGAACAGCTT	19800
		*			GGCCGGCCTT	19860
					GAGTCCTCGG	19920
					TAGAAACACA	19980
					GGGCTTTGAC	20040
					CCGGAACTTG	20100
					ACGGACCCGC	20160
					CGGGCCCGGT	20225
					TTAATCATGC	20280
					G CGGCTTGCCG	20340
					A TCATAGATGC	20400
					C AAAATAGCAT	20460
					A AAGGGACECA	20520
STATATAAC	A GGCAATGTT	AGACCCAAA	G GTGTCCAAC	I ACGGGCGAC	T ATCTARTCAT	20580
CCCATCGTA	T GACATACCG	G CGATCATCA	CATGATCAA	g gagaatgga	TOAKCOAKOT	20640
CTRAAAGAG.	A GTTTATTAA	s tessettets	g AGGCCAACA	T CAACAGGAG	G GCAGCTGTAT	20700
CGCTATTTG	λ					20713

APPROVED O G. FIG.

BY CLASS STREETS


DRAFTSMAN

14/48

FIGURE 3B

2

GGATCCCTCT	GACAACCTTC	AGATAAAA	CGTATATGCC	CCCTTTTTTC	AGTGGGACAG	60
CAACACCCAG	CTAGCAGTGC	TACCCCCATT	TTTTAGCCGA	AAGGATTCCA	CCATTGTGCT	120
CGAATCCAAC	GGATTTGACC	CCGTGTTCCC	CATGGTCGTG	CCGCAGCAAC	TGGGGCACGC	180
TATTCTGCAG	CAGCTGTTGG	TGTACCACAT	CTACTCCAAA	ATATCGGCCG	GGGCCCCGGA	240
TGATGTAAAT	ATGGCGGAAC	TTGATCTATA	TACCACCAAT	GTGTCATTTA	TGGGGCGCAC	300
ATATCGTCTG	GACGTAGACA	ACACGGATCC	÷			330

WO 96/06159

15/48

FIGURE 3C

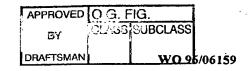

			TOGGGTAGOT	TGGAGACAAA	CAGCTCCAGG	- -
GGATCCGCTG	GCAGGTGGGC	GCGCACCTCG		GGCCGGTCA	TGCGATCTGT	120
CCAGTCCGCG	CCGTAGCGCC	TGCAGGTGCC	TCACCACCGG		GTCTCCAAGA	180
		CCCTTGGGAA	GCCGCTGAAC	CAGC - CCAGC	•••	240
		TGTCGCGATA	GAGGTTAGGG	TAGGIGICCO		300
		ACACCACTGT	CTGCTGGGGG	ATCATCCTTC	•	
GGGCTCAAAC	CIGCCCAGAC	TO CATEGO	GCAGACTGCC	AGGCCTTGC	AGGAGTGGTG TCCCTGCAGC	360
GCATTCTTTG	GAAGTAGTGG	TAGAGAIGGA	CONTRACTOR	: GGACTCCCGG	TCCCTGCAGC	420
GCGATGGTGC	GCACCGTTT	TAAGAAACCC	CCCAGGGGG	· · · · · · · · · · · · · · · · · · ·	TCCCTGCAGC	480
xTCTCGGCC7	GCTGTACGT	CTTGGCGAAT	ATGCGACGA	Alcocion	G CGCACGGGGT	540
		C NTACAGGCC	3 GTGAGGGCC	C CLGGG1C1	_	603
CCCAGGGCC		A CAGGTTGCA	A GGCCGCGAA	T ACCCCTCTG	C ACGCTGCTGT	
AACAGGGTG	TGTGAMACA					62
GGACGTGGG	T GTATGCTCC	G IGGWICE				

FIGURE 3D

					GTICCCCAIG	
					CCACATCTAC	
TCCAAAATAT	ceecçeeec	CCCGGATGAT	GTAAATÄTGG	CGGAACTTGA	TCTATATACC	180
	CATTTATGGG	GCGCACATAT	CGTCTGGACG	TAGACAACAC	GGA	233

FIGURE 3E

GAAATTACCC	ACGAGATCGC	TTCCCTGCAC	ACCGCACTTG	GCTACTCATC	AGTCATCGCT	63
CCGGCCCACG	TGGCCGCCAT	AACTACAGAC	ATGGGAGTAC	ATTGTCAGGA	CCTCTTTATG	123
ATTTTCCCAG	GGGACGCGTA	TCAGGACCGC	CAGCTGCATG	ACTATATCAA	AATGAAAGCG	180
GGCGTGCAAA	CCGGCTCACC	GGGAAACAGA	ATGGATCACG	TGGGATACAC	TGCTGGGGTT	240
CCTCGCTGCG	AGAACCTGCC	CGGTTTGAGT	CATGGTCAGC	TGGCAACCTG	CGAGATAATT	300
CCCACGCCGG	TCACATCTGA	CGTTGCCT				328

18/48

FIGURE 3F

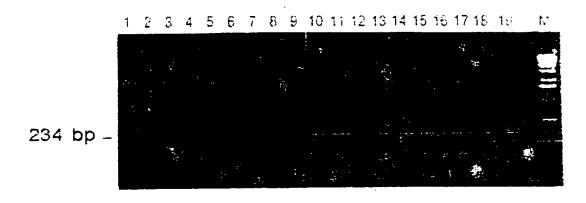
AACACGTCAT	GTGCAGGAGT	GACATTGTGC	CGCGGAGAAA	CTCAGACCGC	ATCCCGTAAC	60
CACACTGAGT	GGGAAAATCT	GCTGGCTATG	TTTTCTGTGA	TTATCTATGC	CTTAGATCAC	12
AACTGTCACC	CG					13

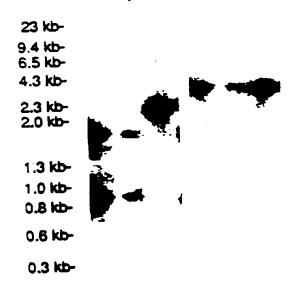
nakata a a a a a a a

WO 96/06159

19/48

FIGURE 4A




FIGURE 4B

20/48

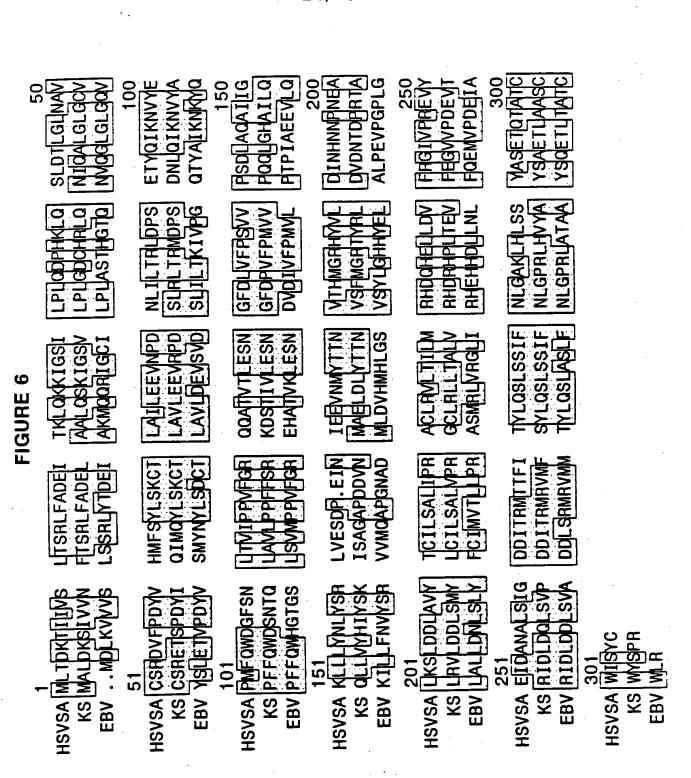
FIGURE 5

1 2 3 1 2 3

Probe:

KS330Bam KS627Bam

Enzyme:


Pvu II

APPROVED O G. FIG.

VO 96/06159

DRAFTSMAN

21/48

 WO 96/06159

22/48

FIGURE 7

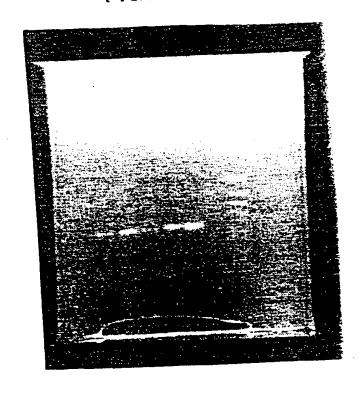
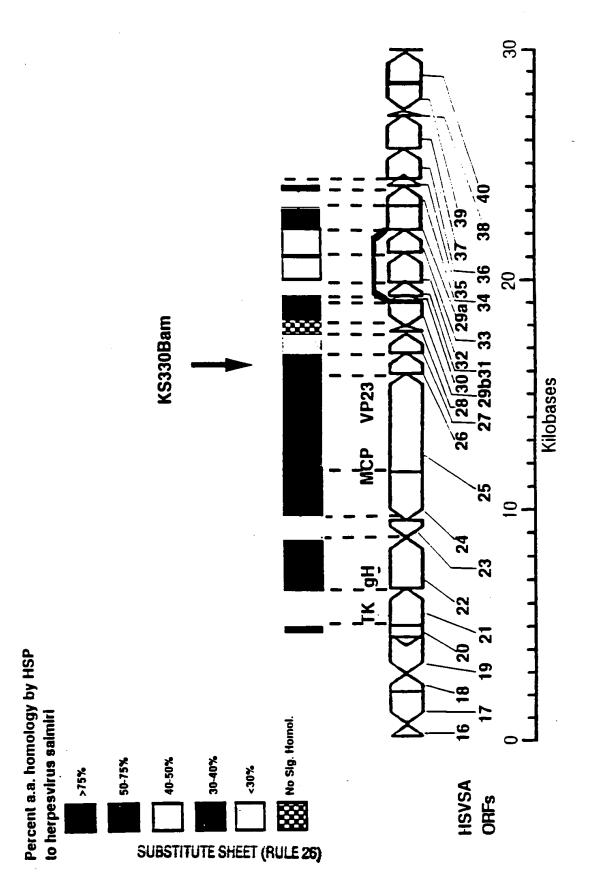
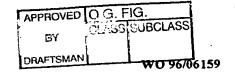



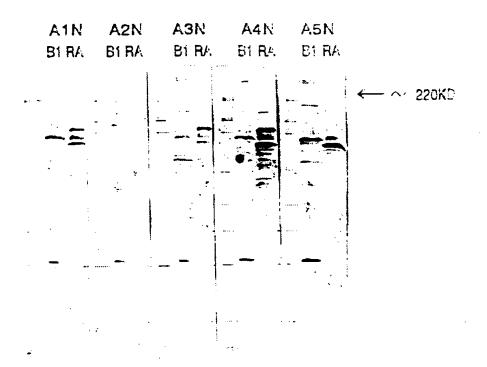
FIGURE 8

DOBOTATO LORGE

23/48


Daella al alega

24/48


FIGURE 9

M B1 RA

← ~ 220KD

FIGURE 10

WO 96/06159

26/48

FIGURE 11

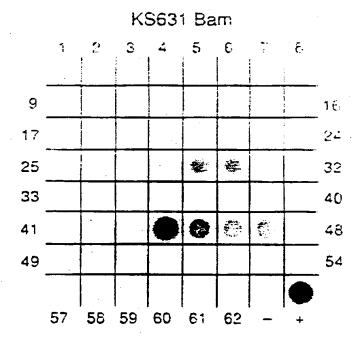
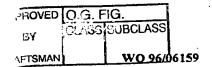


FIGURE 12


Gene Homologs

27/48

							18/8		EHV.2	7	EBV		
KSIIV								6 × 1 ×	O.B.C	X1, X8	OIIE	%I,%3	_
1	Start	AIG	9lop	=	1414	PolyA		M. NO			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
							02 EEO		2 3		1 1 1 1 1		
111 XI.	ZHIZ	SIR		Ē				33% 60%	0111 21	31% 51%	BX1 1	XEX XEX	¥
17 131	204.16	31.1	18(1)	<u>\$</u>				2 2 2 2 2		114.57%	BXII?	25.K. 40.K	Ē
	1001	1861.3	16.421	9.7	18685	16414	CHI 22	35%,55%	77 1841		. 1010	315, 515	
// 0110			16.42.3	[14955	16422	ORI 23	338,57%	14 73 14 73	K			
17 110	15208	27.62	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	;		(273)	£ 100 54	45%,66%	13111 24	41×154	BC18 +	#12.5/W	
1411 24	17843	17048	15,206	123				¥16 ×33	0181.25	6.1%, 79%	11134	%\$/`%!E	- 2
0181.25	1,3021	12449	6186	11/6	112.45		CHIL			46% 111%		417, 11%	VI'21
		6.93	1876	308	117.45	(E)(B)	£	28% 76%	2			19% 41%	
	2/8/	7855	(0,10)	X.	7419	EDA?	13111 21	X1X 40%	~	* * * * * * * * * * * * * * * * * * *	i E	•	
	: :	;	3	130	0.53	5274	:		-				
PE 20	# /9		e k	•			1	210 275		68% 82%	5 21.10	C12 15%	ŭ.
200 E	235		6363	9	105	6039		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5	X95 X81	RIH 135	30% 53%	
(A. 927	5186	\$102	4869	Ξ	5340	4362	92 20	338.55A		343	4 1 11 10	26.2 XX	
	1/67	6963	4780	174	5,140	4.162	088 31	43%,63%	16 810	200			
				3	5.340	91 (K	1000 32	30%,52%	CT 1310	328,51%		%	
OH 12	- -					1653	0111 33	36%,56%	(()))	200 X10	Br311.2	37% 5.7%	
14 14 14	2100	ž	£.	È		2		51% 68%	67 1110	57%,68%	B1;181	41% 51%	Ē
OH 25.	Ξ	6 7 U	1961	313				200,400	7	*12 *12	81311	11% 55%	
*****	10801	9.11	9	131	IV (A)	;			, H		BOAT 15		
			#.T	\$		3.	SF 110						

polyadenylation signal, (AAIAAA, AI IAAA), %1, percentage of aligned entiro acid identity, %S, percentage of aligned similar amino acids, I, function . incomplete Offits, S. strand (C. complementary), IAIA, tocation of upstream IAIA elements (1AI IAA, 1AIAAA,1AIAAI), The initialistic tred for KSFIV ORFS is relative to the HVS ORF indirentlative

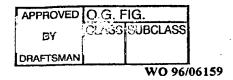

tk. Hyoniline kinaso, gH, glycoproloin H, MCP, major capskf protein, VP23, virkm protein, SG, putative DCIA packaying spliced gane

FIGURE 13

Panent no	HIV Risk	Non-ap	sorped	P3H3-abs	sorbea
AIDS-KS Cases	Group*	HBL	PRHI	HBL-c	EST.
1	H≠B	4050	1350	4050	50
-	H 15	450	50	450	50
2	H/B	450	450	450	50
÷	H/B	450	450	150	<50
•	H/B	4050	1350	1350	150
ė	H/B	4050	1350	450	50
-	H/B	12.150	450	12.150	150
8	H/B	1350	1350	1350	150
Ş	H/B	1350	450	1350	50
10	H/B	150	150	150	<50
11	H/B	150	450	50	<50
12	H/B	450	450	450	50
13	H/B	1350	450	1350	50
14	H/B	4050	1350	4050	50
CMI.		1153	526	780	63
HIV/AIDS Controls					
1	H/B	150	150	5 0	5 0 ,
2	H/B	150	150	5 0	50
3	H/B	12.150	405 0	150	150
4	H/B	1350	4050	150	150
5	H/B	4050	405 0	450	450
ė	IVDU-F	1350	1350	150	150
-	IVDU-F	12.150	12.150	450	450
•	Hémo	50	150	<50	<50
•	Hemo	50	50	<50	<50
10	Hemo	150	150	<50	<5℃
11	Hemo	450	1350	5 0	150
12	Hemo	150	450	50	50
13	Heno	5 0	5 0	<50	<50
14	Hemo	50	<50	<50	<50
15	Hemo	150	450	50	50
16	Hemo	150	150	50	50
GMT		342	450	51	67
Kruskall-Wallace H				_	
value		4.3	0.31	15.4	1.2
p value"		0.04	۵.0	0. 0000 9	0.30
•					

^{*}H/B=Homosexual/bisexual maies, IVDU-F=Female intravenous drug user. Hemo=nemophiliac male **Companson perween log titers for case and control sera.

29/48

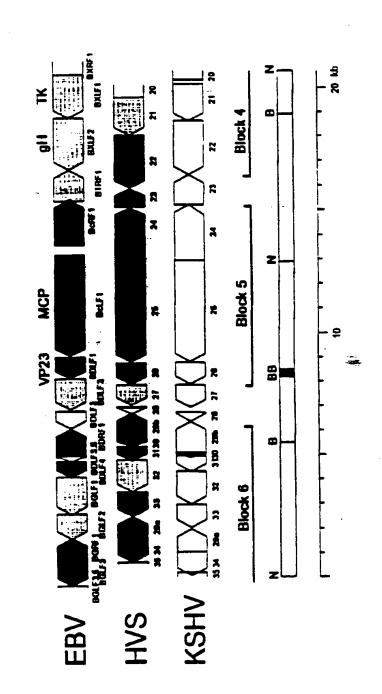
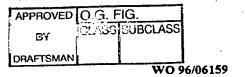
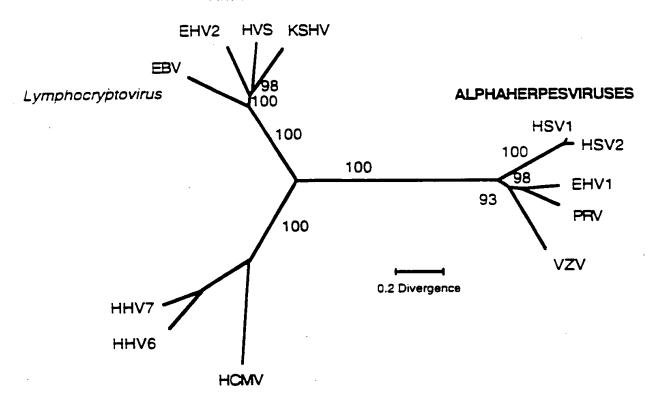
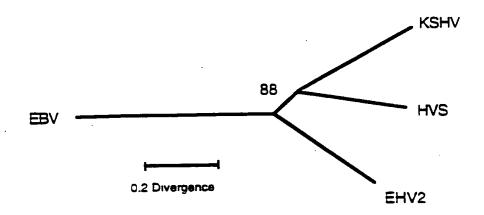


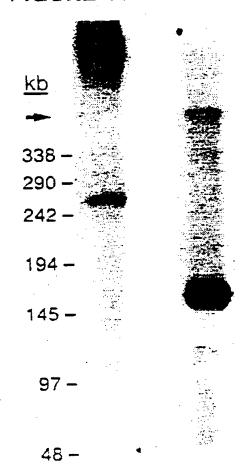
FIGURE 14


FIGURE 15A
GAMMAHERPESVIRUSES

Rhadinovirus

BETAHERPESVIRUSES


FIGURE 15B

Harara araman

31/48

FIGURE 16A FIGURE 16B

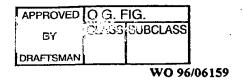
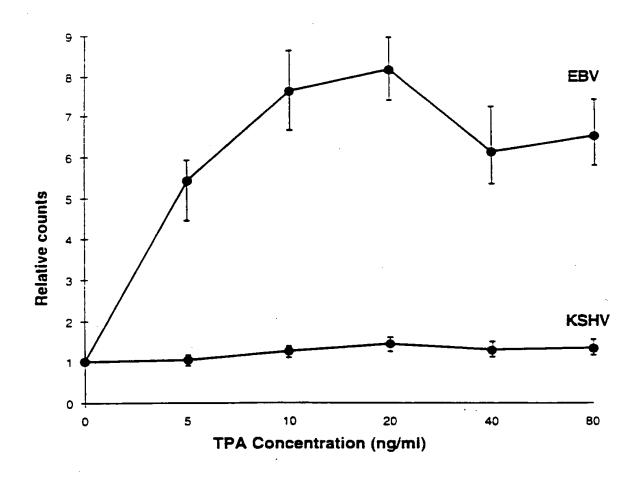
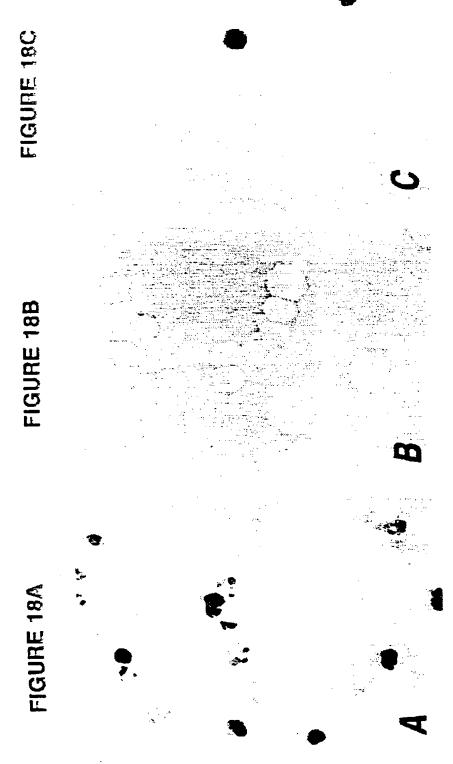




FIGURE 17

SUBSTITUTE SHEET (RULE 26)

PCT/US95/10194

WO 96/06159

34/48

FIGURE 19A

FIGURE 19B

D

FIGURE 19C

FIGURE 19D

APPROVED O.G. FIG.

BY CLASS SUBCLASS

DRAFTSMAN WO 96/06159

35/48

FIGURE 20A

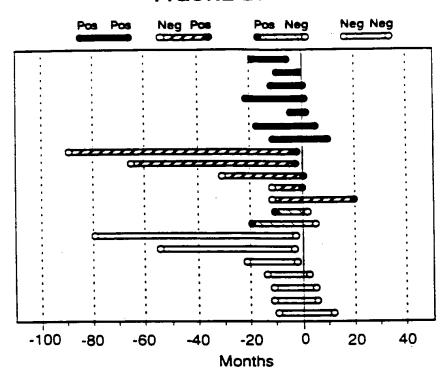
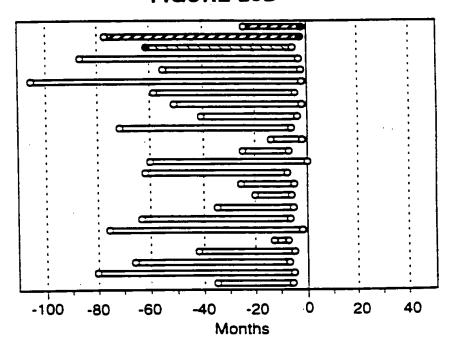
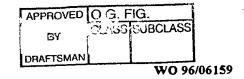



FIGURE 20B

O.G. FIG. APPROVED DRAFTSMAN WO 96/06159

36/48

FIGURE 21


	Initial Sample	Second Sample
AIDS-KS, n=21 Months prior to or after AIDS-KS median (range)	-13 (87 to -4)	(6 to 120)
CDA+ count, mm ' median (range)	432 (6.3 to 866)	124 (8 to 640)
KSHV positivity m (%)	9 (43%)	12 (57%)
Cay/Bisexual AH2S without KS, n=23 Months prior to AH2S diagnosis median (range)	. 55 (* 106 to -13)	.5 (8 to -0)
CDA+ count, mm † median (range)	612 (333 to 1309)	215 (11 to 598)
KSHV positivity	1 (4%)	2 (9%)

Hemophilic AIDS without KS, n=19 CD4+ count, mm¹* median (range) KSHV positivity no. (%)

2 (11%)

344 (83 to 559)

401911 counts available for 15 hemophilic patients at or prior to sample collection date.

37/48

FIGURE 22

PCR analysis of KS330233 in DNA samples from patients with Kaposi's sarcoma and tumor controls

KS KS330233 No. tested positive (%) KS tissue: AIDS-KS 24 22 (92) 20 17 (85) Endemic KS 39 (89) Total Control Tumors: HIV seropositive HIV seronegative Total 1 (14) 2 (13) 15 22 3 (14)

APPROVED O G. FIG.

BY CLASS SUBCLASS

DRAFTSMAN

WO 96/06159

38/48

FIGURE 23

Characteristics of the Study Population

Patient Disease Status

	With KS	Without KS
II.	47	42
4ale jemale	47	39
African American Von-Hispanic White Hispanic	7 38 0	4 32 5 1
Homosexual IDU Heterosexual Other/Unknown	44 0 2 1	36 2 3
CD-f cells count 0-100 100-300 >300 Unknown	28 12 7 0	21 11 9

WO 96/06159

39/48

FIGURE 24

Prevalence of Antibody to KSHV p40 in HIV-1 Positive Patients with and without Kaposi's Sarcoma

Patient Disease Status

State of Residence	with KS (%)	(%)	without KS (%)	%
Connecticut	10/13+ (77)	(77)	0/13	(0)
New York	15/23 (65)	(65)	3/28	(II)
California	11/2	(64)	1/0	0
Total	32/47	(89)	3/42	(7)

1 No. patients with antibody to p40/No. patients studied

APPROVED O.G. FIG.
BY CLASS SUBCLASS
DRAFTSMAN WO 96/06159

40/48

FIGURE 25

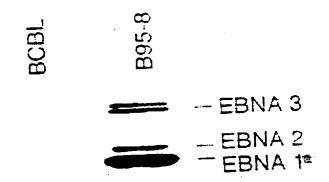
of RS patients With and Without Antibody to KSIIV p40

Comparison	of KS patients With a	Comparison of KS patients With and Without Antibody to KSHV p40	KSIIV p40
	Patient Sero	Patient Serologic Status	
	p40+	<u>p40-</u>	
li S	32	1.5	
African American White Hispanic Other	25 0 0	0 13 0	
Homosexual Heterosexual Other/Unknown	29 2 1	15 0 0	
CD4 0-100 100-300 >300	17 9 6	= ~ −	
Limited KS Extensive KS	22 10	8 7	
Biopsy Confirmed	30	<u>~</u>	

41/48

FIGURE 26

Prevalence of Antibody Detectable by Indirect Immunofluorescence to KSHV Antigens in Chemically Induced BCBL-1 Cells in HIV-1 Positive Patients with and without Kaposi's Sarcoma


Patient Disease Status

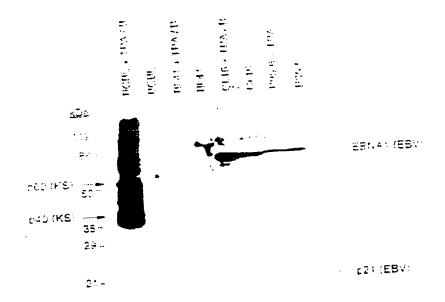
with KS (%) without KS (%)	10/13+ (77) 0/13 (0)	(65) 5/28 (18)	(0) 1/0 (29)	(68) 5/42 (12)
with KS	10/13+	15/23	7/11	32/47
State of Residence	Connecticut	New York	California	Total

1. No. patients with antibody/No. patients studied

42/48

FIGURE 27A

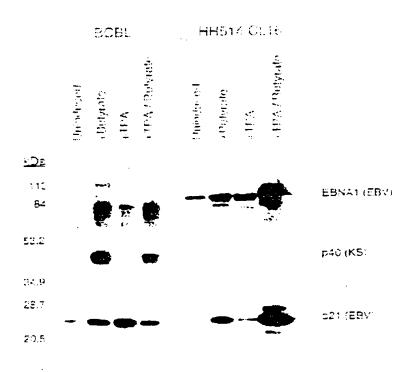
-p21


EBV (+) RM

DOMOVAVO DOMODO

WO 96/06159

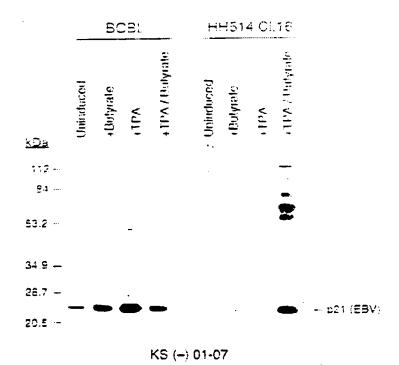
43/48


FIGURE 275

KS (+) 01-03

44/48

FIGURE 28A

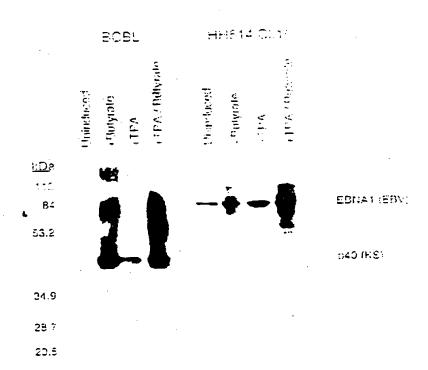


KS (+) 01-08

DOMOVEYS ... OSEODO

45/48

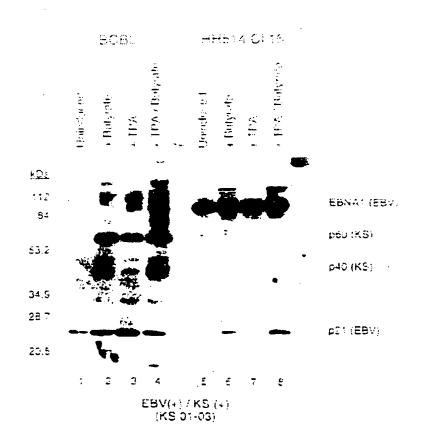
FIGURE 28B



SUBSTITUTE SHEET (RULE 26)

HOMETLY LIMED

46/48


FIGURE 28C

KS (+) 04-01

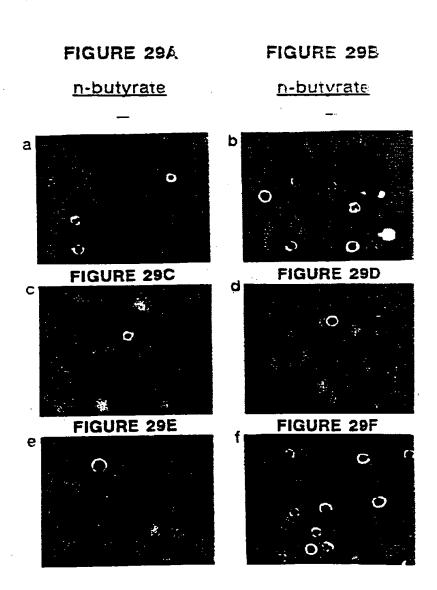

47/48

FIGURE 28D

APPROVED O G. FIG.
BY CLASS SUBCLASS
DRAFTSMAN WO 96/06159

48/48

